Infrared: A Meta Bug Detector
07/10/2022
Speaker
Abstract
The recent breakthroughs in deep learning methods have sparked a wave of interest in learning-based bug detectors. Compared to the traditional static analysis tools, these bug detectors are directly learned from data, thus, easier to create. On the other hand, they are difficult to train, requiring a large amount of data which is not readily available. In this paper, we propose a new approach, called meta bug detection, which offers three crucial advantages over existing learning-based bug detectors: bug-type generic (i.e., capable of catching the types of bugs that are totally unobserved during training), self-explainable (i.e., capable of explaining its own prediction without any external interpretability methods) and sample efficient (i.e., requiring substantially less training data than standard bug detectors). Our extensive evaluation shows our meta bug detector (MBD) is effective in catching a variety of bugs including null pointer dereference, array index out-of-bound, file handle leak, and even data races in concurrent programs; in the process MBD also significantly outperforms several noteworthy baselines including Facebook Infer, a prominent static analysis tool, and FICS, the latest anomaly detection method.
Bio
Chi Zhang is a PhD student from Nanjing University, China, and will visit NUS TEST lab for one year. His research interests span static analysis, fuzzing, symbolic execution, and the combination of software engineering with artificial intelligence, focusing on detecting the bugs in software.